Type Size

    A Missense Glial Cells Missing Homolog B (GCMB) Mutation, Asn502His, Causes Autosomal Dominant Hypoparathyroidism

    J Clin Endocrinol Metab. 2010 May 12. [Epub ahead of print]

    The authors identify a novel mutation of the Glial Cells Missing Homolog B (GCMB) gene. This mutant is a dominant negative, which inhibits the ability of wild type GCMB to transactivate gene expression and is consistent with autosomal dominant inheritance.
    Authors: Mirczuk SM, Bowl MR, Nesbit MA, et. al

    Context: Glial cells missing B (GCMB), the mammalian homolog of the Drosophila GCM gene, encodes a 506-amino-acid parathyroid-specific transcription factor. To date, only two different heterozygous GCMB mutations have been reported in three kindreds with autosomal dominant hypoparathyroidism. Objective: Our objective was to investigate a family with autosomal dominant hypoparathyroidism for PTH, CaSR, and GCMB mutations. Methods: Leukocyte DNA was used with exon-specific primers for PCR amplification and the DNA sequences of the PCR products determined. Functional analyses using fluorescence microscopy, EMSAs, and luciferase reporter assays were undertaken. Informed consent was obtained using protocols approved by a national ethical committee. Results: DNA sequence analysis revealed an A to C transversion at codon 502 of GCMB, which altered the wild-type asparagine (Asn) to histidine (His). Functional studies, using transient transfections of COS7 cells with GCMB wild-type and mutant (Asn502His) tagged constructs, demonstrated that the wild-type and mutant proteins localized to the nucleus and retained the ability to bind the GCM-consensus DNA recognition motif. However, a luciferase reporter assay demonstrated that the Asn502His mutation resulted in a reduction in gene transactivation. Moreover, cotransfection of the wild-type with mutant did not lead to an increase in luciferase activity, thereby demonstrating a dominant-negative effect of the Asn502His mutant that would be consistent with an autosomal dominant inheritance. Conclusion: Our results, which have identified the first dominant missense GCMB mutation, help to increase our understanding of the mechanism underlying gene transactivation that is a prerequisite for the function of this parathyroid gland-specific transcription factor.

    Full Text

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Review our Policies and Procedures for more details